Jump to content

Urea adducts

From Wikipedia, the free encyclopedia

Urea can crystallise with other compounds. These can be called urea adducts or if a solvent is involved, a urea solvate, and the process is called urea extraction crystallization. Urea can also be a neutral ligand if it is coordinated to a central metal atom. Urea can form hydrogen bonds to other oxygen and nitrogen atoms in the substance it crystallises with. This stiffens the solid and raises the melting point.[1] T

List

[edit]
name formula ratio

urea: solute

crystal system space group unit cell volume density comment reference
hydrogen peroxide; urea (1:1) HOOH•CH4N2O 1:1 orthorhombic Pnca a 6.732 b 4.8207 c 12.873 Z=4 decomposes slowly at room temperature [2]
urea; acetic acid (1:2) 2CH3COOH•CH4N2O 1:2 monoclinic P21/n a 7.6549 b 10.1351 c 11.5219 β 99.570° Z=4 881.47 1.358 unstable in air [3]
oxalic acid; urea (1:1) C2H2O4•CH4N2O 1:1 monoclinic C2/c a 13.0625 b 6.6437 c 6.8478 β 92.474° [4]
oxalic acid; urea (1:2) C2H2O4•2CH4N2O 2:1 monoclinic P2/c a 5.058 b 12.400 c 6.964 β 98.13° [5]
Urea - N,N-dimethylformamide (3:1) 3CH4N2O·C3H7NO 3:1 triclinic P1 a = 7.525 b = 9.866 c = 10.821 α = 65.61° β = 79.43° γ = 70.76° Z=2 689.7 1.219 colourless @150K [6]
N,N-dimethylacetamide; urea (1:1) C4H9NO·CH4N2O 1:1 monoclinic C2/c a = 7.2770 b = 17.5394 c = 7.3789 β = 119.450° Z=4 820.11 1.192 colourless @120K [7]
Urea malonic acid 1:1 monoclinic P2/c a 13.091 b 5.455 c 9.933 β 104.39° [8]
Maleic acid; urea (1:1) 1:1 monoclinic Cc a 5.144 b 9.999 c 14.80 β 95.1° [9]
Succinic acid bis urea 2:1 monoclinic P21/c a 5.637 b 8.243 c 12.262 β 96.75° Z=2 565.81 1.41 [10]
Maleic acid; urea (2:1) 2:1 monoclinic P21/n a 5.661 b 11.754 c 19.173 β 91.56° [9]
Fumaric acid; urea (1:2) 1:2 monoclinic P21/c a 5.540 b 8.227 c 12.426 β 97.22° [11]
D-Tartaric 1:1 orthorhombic P212121 a 17.229 b 9.824 c 5.056 Z=4 1.63 transparent 255 to 1370 nm; SHG 3×KDP [12]
DL-Tartaric 1:1 monoclinic P21 a 7.6973 b 23.3310 c 4.8727 β 100.82° NLO; transparent from 240 to 1950 nm [13]
Gluatric acid bis urea 2:1 monoclinic C2/c a 11.954 b 10.932 c 9.078 β 97.86° Z=4 [14]
Itaconic acid 1:1 monoclinic P21/c a 12.71 b 5.2695 c 13.833β 104.78° [15]
2-bromotetradecane urea hexagonal P6122 a=8.2582 c=10.9937 298K [16]
2-bromotetradecane urea orthorhombic C2221 207K [16]
2-bromotetradecane urea monoclinic P21 a 16.338(1)Å b 10.9665(8)Å c 16.338(1)Å, α 90° β 60.00° [16]
4-amino benzoic acid; urea (2:1) (C7H7NO2)2(CH4N2O) 1:2 orthorhombic Pnab a=7.4159 b=11.870 c=18.750 [17]
salicylic acid; urea (1:1) 1:1 monoclinic C2/c a=22.206 b=5.108 c=17.177 β=106.18 Z=8° 1.407 [18]
5-nitro salicylic acid; urea (2:1) (C7H5NO5)2(CH4N2O) 1:2 triclinic P1 a=6.9889 b=12.1968 c=12.3622 α=60.923° β=81.169° γ=76.938° [17]
3,5-dinitro salicylic acid; urea (1:1) (C7H4N2O7)(CH4N2O) 1:1 monoclinic P21/c a=4.942 b=22.337 c=10.389 β=100.92° [17]
o-phthalic acid; urea (1:1) 1:1 triclinic P1 a=7.422 b=7.662 c=10.088 α=85.95° β=82.01° γ=65.14° [17]
urea : 1,4-dioxane (1 : 1) C4H8O2•C3H6O 1:1 monoclinic P2/c a=6.7949 b=4.5234 c=12.2711 β=95.701° Z=2 [1]
urea : morpholine (1 : 1) C4H8ON•C3H6O 1:1 orthorhombic Pbcm a=4.5847 b=19.131 c=8.9047 Z=4 [1]
3,5-dimethylpyridine bis(urea) (CH3)2C5H3N•2C3H6O 2:1 orthorhombic Abm2 a=21.737 b=7.2102 c=15.590 Z=8 2443.4 1.236 at 173K [19]
3,5-dimethylpyridine bis(urea) (CH3)2C5H3N•2C3H6O 2:1 monoclinic Cc a=8.5829 b=21.4843 c=7.2050 β=114.405° Z=4 1209.87 1.248 at 100K [19]
2,6-dimethylpyridine urea (CH3)2C5H3N•C3H6O 1:1 triclinic P1 a=7.4126 b=7.6720 c=8.1731 α=88.391° β=83.564° γ=80.059° Z=2 454.92 1.221 at 100K [19]
urea 2,6-dimethylpyridine (CH3)2C5H3N•C3H6O 1:1 monoclinic C2/c a=1.426 b=11.1168 c=7.4318 β=101.23° Z=4 925.9 1.200 at 200K [19]
2,6-dimethylpyridine bis(urea) (CH3)2C5H3N•2C3H6O 2:1 orthorhombic Pnma a=8.0772 b=7.2986 c=20.4169 Z=4 1203.64 1.254 at 100K [19]
2,6-dimethylpyridine bis(urea) (CH3)2C5H3N•2C3H6O 2:1 monoclinic C2/c a=11.160 b=11.5421 c=10.910 β=116.12° [17]
2-picoline; urea (1:1) C6H7N·CH4N2O 1:1 orthorhombic Pbca a = 7.471 b = 14.916 c = 15.338 Z = 8 1709.2 [20]
Urea pyrazine-2,3-dicarboxylic acid 1:1 monoclinic P21/n a=7.725 b=10.2530 c=12.612 β=97.997° [17]
bipyridine urea triclinic P1 a=7.200 b=8.297 c=9.835 α=75.849° β=70.744° γ =73.045° [21]
bipyridine urea triclinic P1 a=7.2862 b=8.3747 c=9.8647 α=76.061° β=72.789° γ=74.121° [21]
1,10-Phenanthroline urea 1:1 monoclinic C2/c a=14.342 b=12.002 c=7.3724 β 116.743° [21]
2,9-Dimethyl-1,10-phenanthroline urea 1:1 orthorhombic Cmcm a=11.370 b=17.351 c=7.3593 [21]
sodium chloride; urea; water (1:1:1) NaCl·CH4N2O·H2O 1:1 triclinic a = 6.44 Å, b = 5.245Å, c = 17.312 Å, and a=90°, β=90.15°, γ=90° 588.76 SHG 1.53 × KDP, birefringence 0.084@1064 nm UV edge 209 nm [22][23]
Bis(2-3-isopropyl-7-oxocyclohepta-1,3,5-trien-1-olato)bis[(3-isopropyl-7-oxocyclohepta-1,3,5-trien-1-olato)copper(II)]-urea-acetone (1/6/2) [Cu2(C10H11O2)4]·6CH4N2O·2C3H6O 5:1 monoclinic P21/c a 17.0125 b 11.0470 c 17.2731 β 110.385° Z=2 3042.95 1.371 green [24]
aqua(N-salicylidene-rac-alaninato- O,N,O')copper(II)-urea (1/1) 1:1 triclinic P1 a = 7.637, b = 8.509 c = 10.716 α = 93.10° β = 97.97° γ= 106.37° Z= 2, 658.5 blue [25]
Aqua[9-(1,8-diazafluoren-9-ylidene)amino-1,8-diazafluorenato]hydroxo(urea)zinc(II) urea solvate [Zn(C22H12N5)(OH)(CH4N2O)(H2O)]•C4N2O 1:1 monoclinic P21/c a 7.8637 b 16.0133 c 17.9513 β 101.358° Z=4 2216.2 1.687 purple [26]
Pentakis(carbamide)dioxoneptunium(V) nitrate [NpO2{OC(NH2)2}5](NO3) monoclinic P21 a = 11.142, b = 7.6379 c = 11.143 β = 108.9° Z = 2 897.1 [27]
Bis[(isothiocyanato)tetraureadioxoneptunium(V)] urea {NpO2(NCS)[OC(NH2)2]4}2 · OC(NH2)2 tetragonal P43212 a=7.851 c=56.84 Z=4 3504 2.265 light green [28]

References

[edit]
  1. ^ a b c Taouss, Christina; Thomas, Lena; Jones, Peter G. (2013). "Packing principles for urea and thiourea solvates: structures of urea : morpholine (1 : 1), urea : 1,4-dioxane (1 : 1), thiourea : morpholine (4 : 3) and thiourea : 1,4-dioxane (4 : 1)". CrystEngComm. 15 (34): 6829. doi:10.1039/c3ce40933c. ISSN 1466-8033.
  2. ^ Fritchie, C. J.; McMullan, R. K. (1981-05-01). "Neutron diffraction study of the 1:1 urea:hydrogen peroxide complex at 81 K". Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry. 37 (5): 1086–1091. Bibcode:1981AcCrB..37.1086F. doi:10.1107/S0567740881005116. ISSN 0567-7408.
  3. ^ Cruz-Cabeza, Aurora J.; Day, Graeme M.; Jones, William (2008-10-10). "Towards Prediction of Stoichiometry in Crystalline Multicomponent Complexes". Chemistry – A European Journal. 14 (29): 8830–8836. doi:10.1002/chem.200800668. ISSN 0947-6539. PMID 18752227.
  4. ^ Harkema, S.; Ter Brake, J. H. M. (1979-04-15). "Structure and thermal expansion of urea–oxalic acid (1:1)". Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry. 35 (4): 1011–1013. Bibcode:1979AcCrB..35.1011H. doi:10.1107/S0567740879005446.
  5. ^ Harkema, S.; Bats, J. W.; Weyenberg, A. M.; Feil, D. (1972-05-15). "The crystal structure of urea oxalic acid (2:1)". Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry. 28 (5): 1646–1648. Bibcode:1972AcCrB..28.1646H. doi:10.1107/S0567740872004789.
  6. ^ Fernandes, Philippe; Florence, Alastair J.; Fabbiani, Francesca; David, William I. F.; Shankland, Kenneth (2007-12-15). "Urea– N,N -dimethylformamide (3/1)". Acta Crystallographica Section E: Structure Reports Online. 63 (12): o4861. Bibcode:2007AcCrE..63o4861F. doi:10.1107/S1600536807059934. ISSN 1600-5368.
  7. ^ Fernandes, Philippe; Florence, Alastair J.; Fabbiani, Francesca; David, William I. F.; Shankland, Kenneth (2008-02-15). "Urea– N,N -dimethylacetamide (1/1)". Acta Crystallographica Section E: Structure Reports Online. 64 (2): o355. Bibcode:2008AcCrE..64O.355F. doi:10.1107/S1600536807067232. ISSN 1600-5368. PMC 2960435. PMID 21201387.
  8. ^ G.Bandoli, D.A.Clemente, M.Brustolon, C.Corvaja, C.Pinzino, A.Colligiani (1980). "X-ray diffraction and ENDOR investigation of hydrogen bonding in malonic acid-urea 1 : 1 adduct". Molecular Physics. 39 (5): 1145–1152. Bibcode:1980MolPh..39.1145B. doi:10.1080/00268978000100951.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  9. ^ a b Videnova-Adrabińska, Veneta (January 1996). "The hydrogen bond as a design element in crystal engineering. Two- and three-dimensional building blocks of crystal architecture". Journal of Molecular Structure. 374 (1–3): 199–222. Bibcode:1996JMoSt.374..199V. doi:10.1016/0022-2860(95)08975-6.
  10. ^ Wiedenfeld, H.; Knoch, F. (1990-06-15). "Harnstoffkomplexe mit Dicarbonsäuren. 1. Mitteilung: die Struktur von Bernsteinsäure–Harnstoff". Acta Crystallographica Section C Crystal Structure Communications. 46 (6): 1038–1040. Bibcode:1990AcCrC..46.1038W. doi:10.1107/S0108270189010024.
  11. ^ Videnova-Adrabińska, V. (1996-12-01). "Symmetry constraints, molecular recognition and crystal engineering. Comparative structural studies of urea–butanedioic and urea– E -butanedioic acid (2:1) cocrystals". Acta Crystallographica Section B Structural Science. 52 (6): 1048–1056. Bibcode:1996AcCrB..52.1048V. doi:10.1107/S0108768196005216. ISSN 0108-7681.
  12. ^ "Growth and characterization of urea-(D) tartaric acid single crystal". Chinese Science Bulletin. 41 (16): 1392–1395. 28 July 1996. doi:10.1360/sb1996-41-16-1392 (inactive 1 November 2024).{{cite journal}}: CS1 maint: DOI inactive as of November 2024 (link)
  13. ^ Lü, M. K.; Meng, F. Q.; Yang, Z. H.; Yu, W. T.; Zeng, H. (1996). "Growth and Characterization of Urea-(DL) Tartaric Acid Single Crystals". Crystal Research and Technology. 31 (7): 833–836. Bibcode:1996CryRT..31..833L. doi:10.1002/crat.2170310702.
  14. ^ Videnova-Adrabińska, Veneta; Etter, Margaret C. (December 1995). "Urea-glutaric acid (2:1) structural aggregates as building blocks for crystal engineering". Journal of Chemical Crystallography. 25 (12): 823–829. Bibcode:1995JCCry..25..823V. doi:10.1007/BF01671077. ISSN 1074-1542. S2CID 94295605.
  15. ^ Smith, Graham; Kennard, Colin H. L.; Byriel, Karl A. (1997). "The Preparation and Crystal Structures of a Series of Urea Adducts: with Fumaric Acid (2 : 1), with Itaconic Acid (1 : 1) and with Cyanuric Acid (1 : 1)". Australian Journal of Chemistry. 50 (10): 1021. doi:10.1071/C97123. ISSN 0004-9425.
  16. ^ a b c Yeo, Lily; Harris, Kenneth DM (1999-12-05). "Temperature-dependent structural properties of a solid urea inclusion compound containing chiral guest molecules: 2-bromotetradecane/urea". Canadian Journal of Chemistry. 77 (12): 2105–2118. doi:10.1139/v99-215. ISSN 0008-4042.
  17. ^ a b c d e f Smith, Graham; Baldry, Katherine E.; Byriel, Karl A.; Kennard, Colin H. L. (1997). "Molecular Cocrystals of Carboxylic Acids. XXV The Utility of Urea in Structure Making with Carboxylic Acids and the Crystal Structures of a Set of Six Adducts with Aromatic Acids". Australian Journal of Chemistry. 50 (7): 727. doi:10.1071/C96199. ISSN 0004-9425.
  18. ^ Hsu, I-Nan; Gellert, Robert W. (February 1983). "The 1:1 crystal complex of salicylic acid and urea". Journal of Crystallographic and Spectroscopic Research. 13 (1): 43–48. Bibcode:1983JCCry..13...43H. doi:10.1007/BF01666795. ISSN 0277-8068. S2CID 96740153.
  19. ^ a b c d e Taouss, Christina; Jones, Peter G. (2014-05-06). "Lutidine adducts of urea: molecular mechanisms for twinning effects on cooling". CrystEngComm. 16 (25): 5695–5704. doi:10.1039/C4CE00560K. ISSN 1466-8033. S2CID 97000988.
  20. ^ Ashurov, Jamshid; Ibragimov, Bakhtiyar; Talipov, Samat (2012-02-15). "2-Methylpyridine–urea (1/1)". Acta Crystallographica Section E: Structure Reports Online. 68 (2): o504. Bibcode:2012AcCrE..68O.504A. doi:10.1107/S1600536812002164. ISSN 1600-5368. PMC 3275249. PMID 22347105.
  21. ^ a b c d Donnelly, Paul S.; Skelton, Brian W.; White, Allan H. (2003). "'Neutralmolekülcomplexe'—Structural Characterization of Some Adducts of Urea and Thiourea with N,N-Bidentate Aromatic Bases". Australian Journal of Chemistry. 56 (12): 1249. doi:10.1071/CH03015. ISSN 0004-9425.
  22. ^ Huang, Tingting; Wang, Ying; Yang, Daqing; Zhang, Bingbing (2023-08-21). "NaCl·CH 4 N 2 O·H 2 O: An Organic–Inorganic Hybrid Ultraviolet Nonlinear Optical Crystal with Optimized Comprehensive Properties". Inorganic Chemistry. 62 (33): 13626–13631. doi:10.1021/acs.inorgchem.3c02025. ISSN 0020-1669. PMID 37556794. S2CID 260773568.
  23. ^ Ilango, E. (August 2014). "Optical and Dielectric Characterization of a new Non linear Optical Urea Sodium Chloride single crystal by slow evaporation technique". International Journal of ChemTech Research. 6 (6): 3237–3240.
  24. ^ Ho, Douglas M. (2010-10-15). "A urea adduct of bis(hinokitiolato)copper(II)". Acta Crystallographica Section C Crystal Structure Communications. 66 (10): m294–m299. Bibcode:2010AcCrC..66M.294H. doi:10.1107/S0108270110035602. ISSN 0108-2701. PMID 20921607.
  25. ^ Warda, S. A. (1999-03-01). "Crystal structure of dimeric aqua(N-salicylidene-rac-alaninato- O,N,O')copper(II)-urea (1/1), C11H15CuN3O5". Zeitschrift für Kristallographie - New Crystal Structures. 214 (1): 77–78. doi:10.1515/ncrs-1999-0141. ISSN 2197-4578. S2CID 96765755.
  26. ^ Komen, R. P.; Miskelly, G. M.; Oliver, A.; Rickard, C. E. F. (1999-08-15). "Aqua[9-(1,8-diazafluoren-9-ylidene)amino-1,8-diazafluorenato]hydroxo(urea)zinc(II) urea solvate". Acta Crystallographica Section C Crystal Structure Communications. 55 (8): 1213–1215. Bibcode:1999AcCrC..55.1213K. doi:10.1107/S0108270199005995. ISSN 0108-2701.
  27. ^ Budantseva, N. A.; Andreev, G. B.; Krot, N. N.; Antipin, M. Yu. (2003). "[No title found]". Russian Journal of Coordination Chemistry. 29 (3): 222–226. doi:10.1023/A:1022892000172. S2CID 91233429.
  28. ^ Andreev, G. B. (2000). "[No title found]". Doklady Chemistry. 375 (4/6): 285–288. doi:10.1023/A:1026699418221. S2CID 92340176.